
Intro to Proteomics/Proteomics Workflow

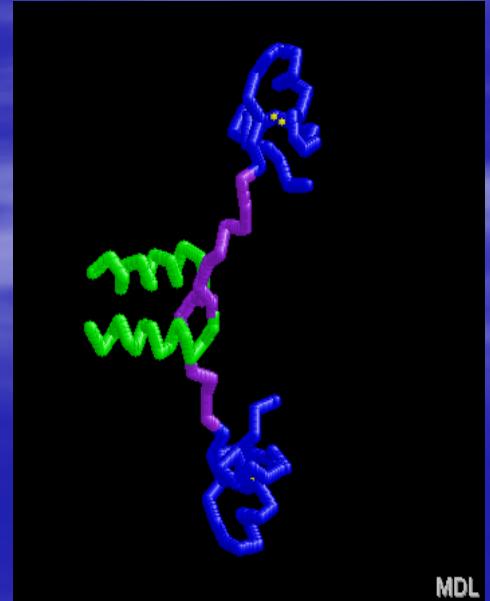
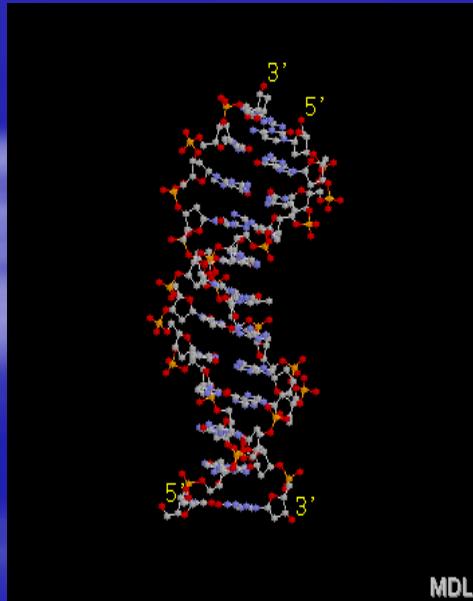
What is proteomics?

“Proteomics includes not only the identification and quantification of proteins, but also the determination of their localization, modifications, interactions, activities, and, ultimately, their function.”

-Stan Fields in *Science*, 2001.

Aren't DNA Arrays Enough? NO !

- Proteins are the primary effectors in cellular function.
- RNA levels may not correlate well with protein expression due to translational regulation, protein degradation, splicing, nuclear transport, post-translational modification.
- Proteins are the target of most pharmacologic therapies.

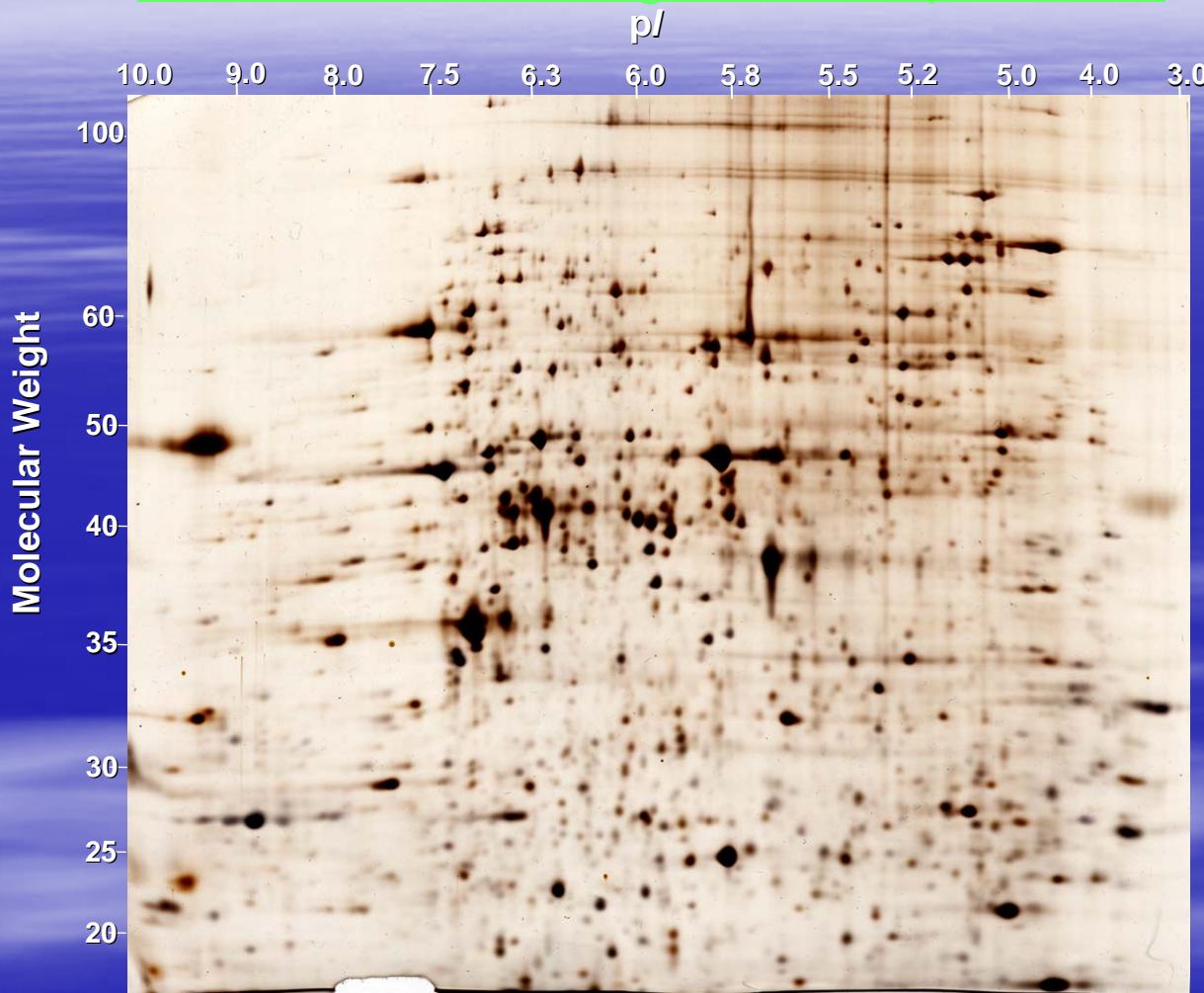


The genome and the proteome: a comparison

Genome

- static
- able to amplify (PCR)
- homogeneous
- no variability in amount

Proteome

- dynamic – condition dependent
- no amplification
- non-homogenous
- high variability in amount ($>10^9$)


Proteomics technologies and methods

- Two-dimensional gel electrophoresis
- mass spectrometry
- protein chips
- yeast 2-hybrid
- phage display
- antibody engineering
- high-throughput protein expression
- high-throughput X-ray crystallography

Proteome analysis: historical perspective

Two-dimensional gel electrophoresis

Gygi, et. al. 1999, *Molecular and Cellular Biology* 19:1720

Compare Multiple 2D Gels

1949--Linus Pauling describes the difference in mobility between normal and sickle hemoglobin.

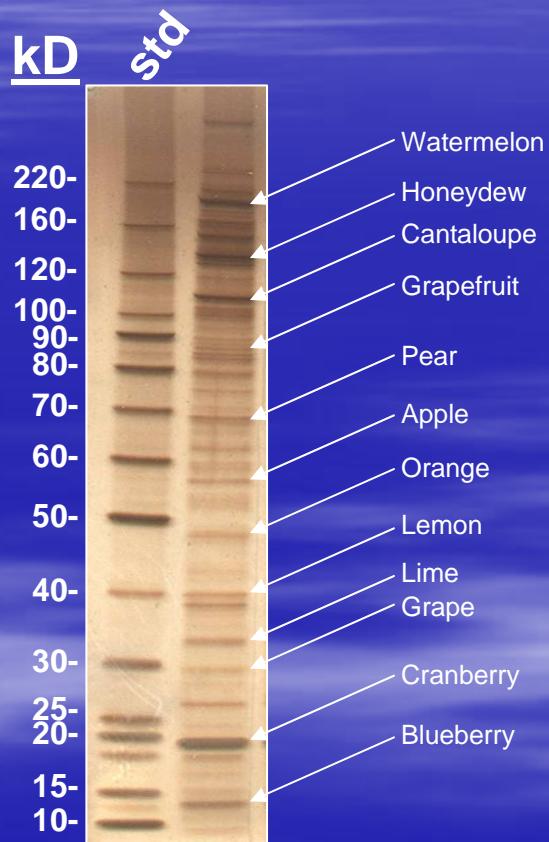
Large scale purification

Edman degradation

Clone protein

What it is:

- A highly powerful tool for protein identification
- Complementary to other technologies and analysis methods

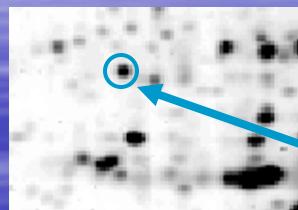

What it is not:

Magic

Able to give all the answers

Simple (relative to running a gel)

How to think about spectrometry based proteomics


Dynamic
Range = 10^3

What can mass spectrometry tell me?

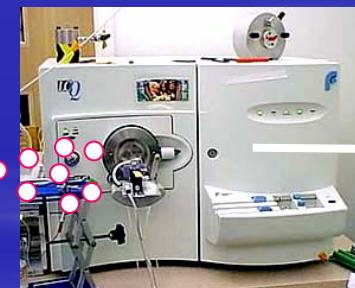
- proteins in mixtures
- quantitative analysis of protein expression
- post-translational modifications:
 - phosphorylation
 - N- or C-terminal modifications
 - glycosylation
- protein interactions

2DE based Proteomics--Today

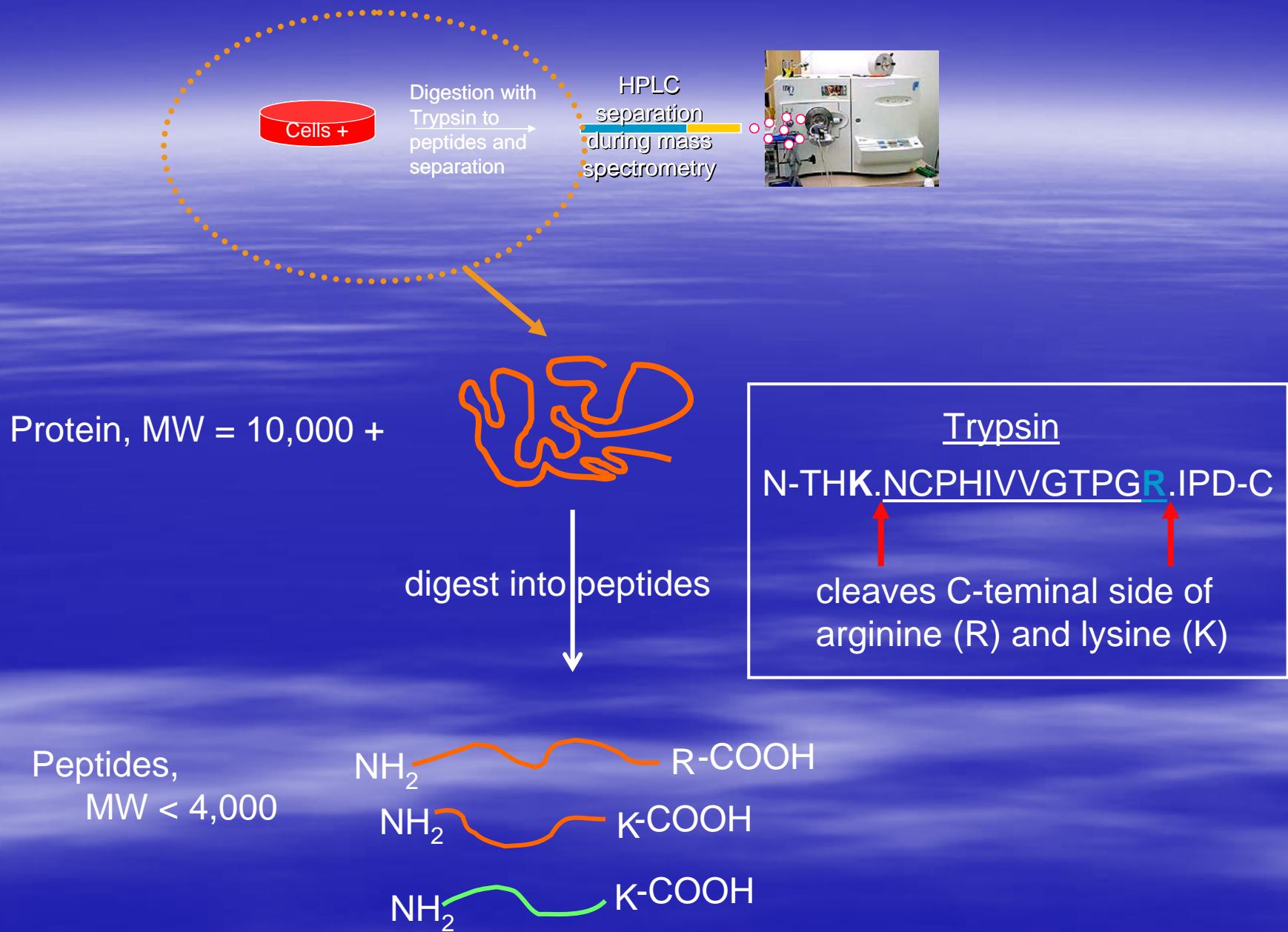
Compare gels to find spots of interest

Cut out the spot of interest for in-gel digest

Identify peptides by mass spectrometry


Drawbacks: cannot identify low abundance proteins and some insoluble proteins. Time and labor intensive.

A New Paradigm--Mass spectrometry based Proteomics--Without Electrophoresis


Digestion with Trypsin to peptides and separation

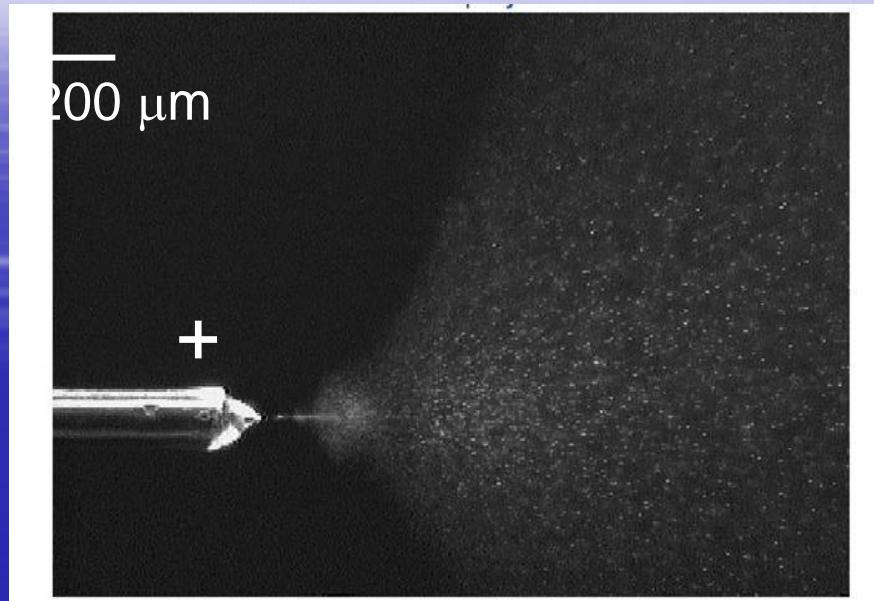
HPLC separation during mass spectrometry

Mass spectrometry identifies proteins

Gene	Protein Name	Ave	S.D.	Unique	Cell
TNFRSF10D	TNF receptor superfamily member 10D precursor	17.17	4.58	1	S
BSG	Basigin precursor	12.88	5.02	5	M
TFRC	Transferrin receptor protein 1	7.81	2.27	3	M
PTEN	Phosphatase and tensin homolog 1 precursor	7.78	2.04	3	S
LGFBP3	Leukocyte growth factor binding protein 3 precursor	7.08	2.72	3	S
LDLR	Low-density lipoprotein receptor precursor	6.57	1.64	12	M
ANGPT1	Angiopoietin-2 precursor	6.08	1.40	1	S
MAP3K1	Mitogen-activated protein kinase 1 precursor	5.81	1.17	3	S
SCOTIN	77S-Scotin/BAG7152 unnamed protein	5.39	3.43	1	S
PLK2	Grindulic kallikrein 2 precursor	5.34	3.42	6	S
DCDC2	Doublecortin domain containing 2 precursor	5.11	1.11	23	M
APTP2	Adenosine triphosphate 2 precursor	4.77	2.05	2	M
SPINT1	Kunitz-type protease inhibitor 1 precursor	3.88	1.08	22	S
LRIG1	Membrane glycoprotein LRIG-1 precursor	3.59	1.39	3	M
TMEM136B	Transmembrane protein 136B precursor	3.54	1.01	3	S
VEGFR	Vascular endothelial growth factor A precursor	3.49	0.24	3	S
LGNN	Legumain precursor	3.24	0.53	2	C
ALCAM	CD166 antigen precursor	3.19	0.39	7	M
TMEM145	Transmembrane protein 145 precursor	3.13	0.39	1	S
CD94	Cluster A lectin receptor	2.97	0.41	4	M
LCN2	Leucine-rich repeat含alpha chain precursor	2.85	1.00	2	M
LGALS3	Leucine-rich alpha-2,6-sugcanolipid protein 3 precursor	2.84	0.48	1	S
CT10B	Protein C10orf precursor	2.56	0.19	2	M
ST14	Suppressor of tumorigenicity 14	2.60	0.74	10	M
PLAB	Prostate differentiation factor	2.47	0.34	6	S
TMEM174	Transmembrane protein 174 precursor	2.43	0.49	15	M
MLP	Microtubule-associated protein 1B precursor	2.38	0.93	4	C
B2M	Beta-2-microglobulin precursor	2.34	0.49	14	S
NRIP1	Nitroglycin 1 precursor	2.30	0.11	27	M
NRIP1	Nitroglycin 1 precursor	2.27	0.03	1	M
PSAP	Prostate-specific antigen precursor, contains: Sapsin A	2.26	0.35	1	S
LDLR	Low-density lipoprotein receptor	2.23	1.69	15	M
MAP3K1	Mitogen-activated protein kinase 1 precursor	2.20	0.49	10	GO
ADAM10	ADAM10	2.20	0.49	10	S
KIF2R	Calton-independent mannose-6-phosphate receptor	2.20	0.60	16	M
TNFRSF10D	TNF receptor superfamily member 10D precursor	2.19	0.10	2	M
TMEM145	Transmembrane protein 145 precursor	2.17	0.11	1	M
SEMA4A	Semaphorin 4A precursor	2.18	0.28	4	M
YL10R	Very low-density lipoprotein receptor precursor	2.09	0.05	1	M
GALNT1	Protein N-acetylgalactosaminyltransferase	2.09	0.52	3	GO

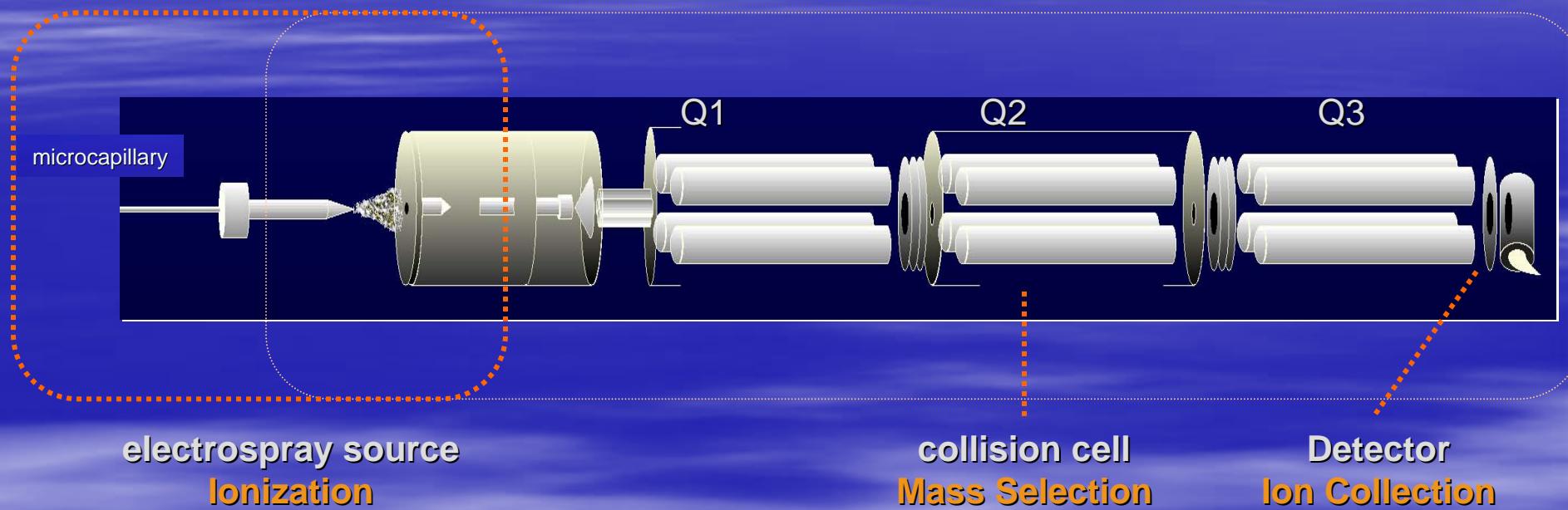
Mass Spectrometry Primer

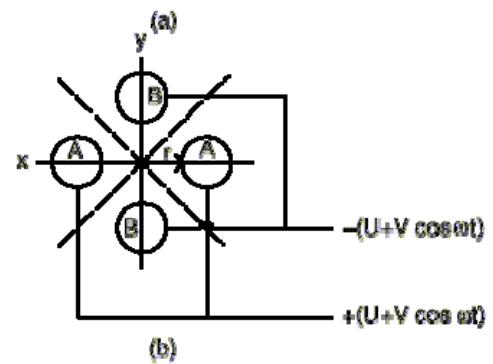
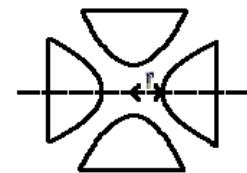
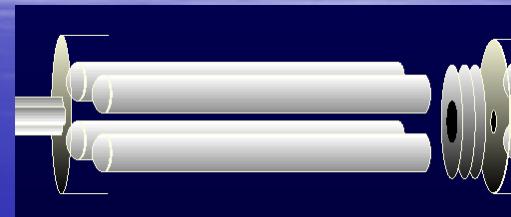
A mass spectrometer
measures mass to charge ratio
or m/z

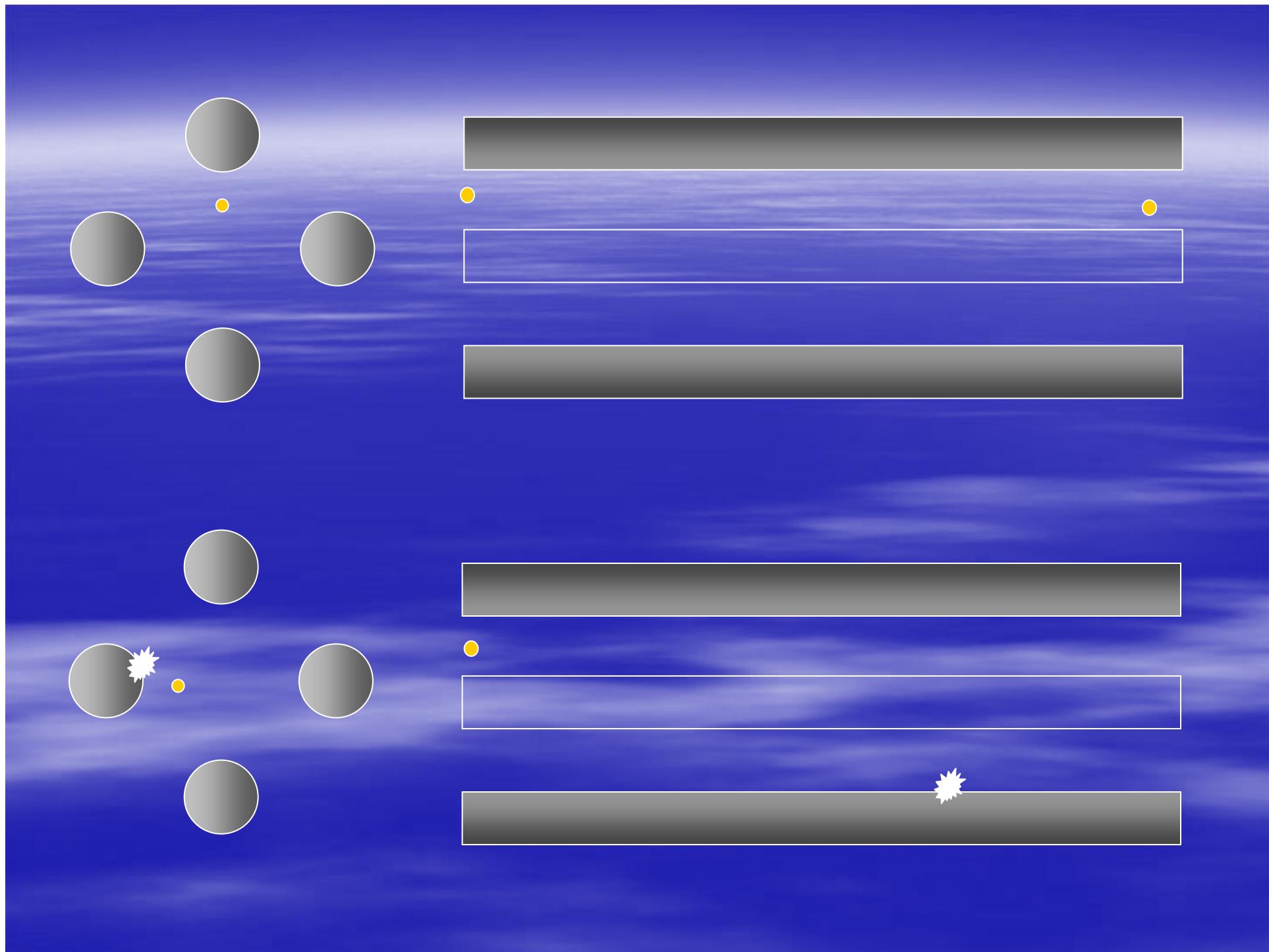

- MALDI
- Electrospray

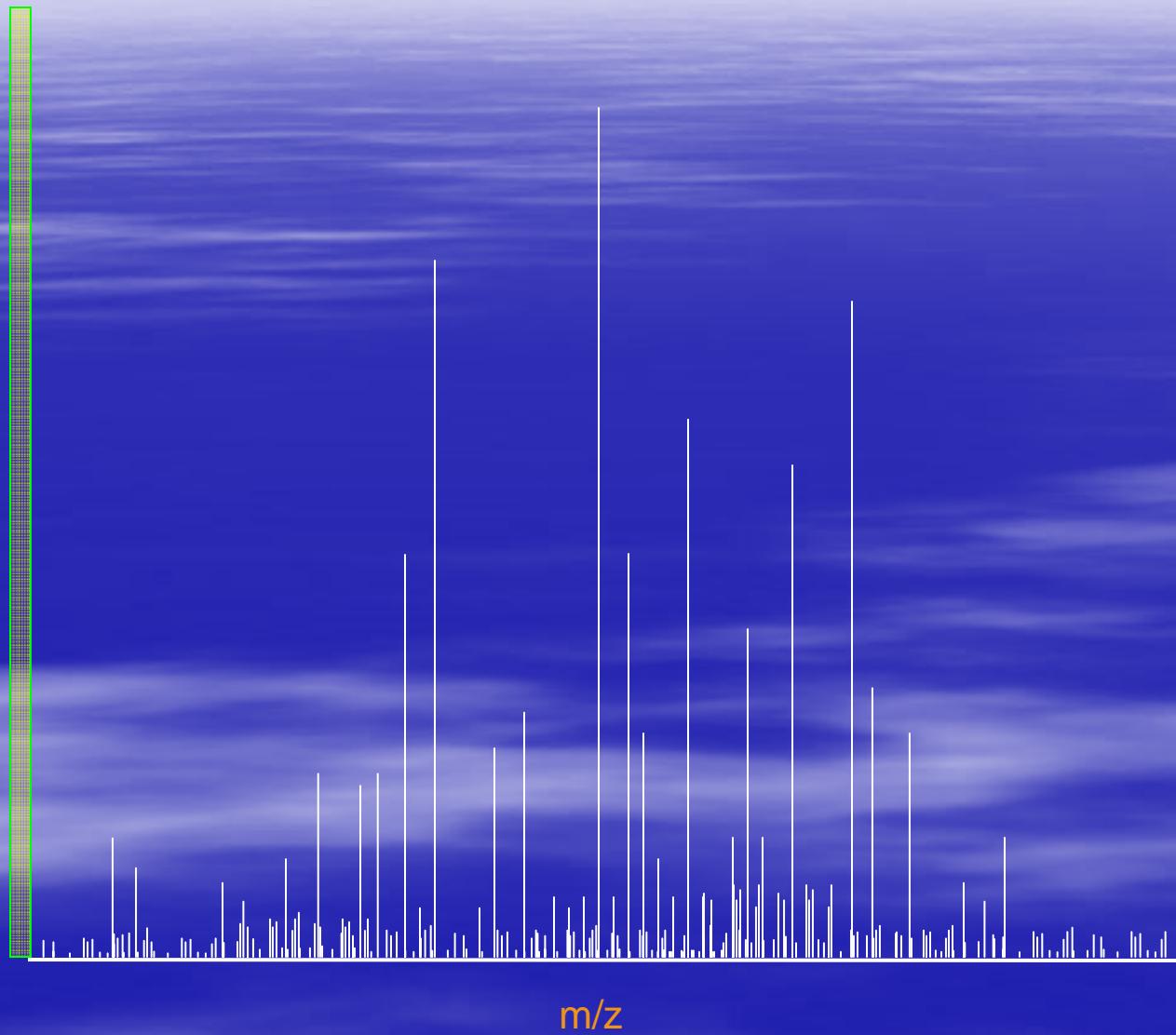
- quadrupole
- ion trap
- time-of-flight

→ mass analysis

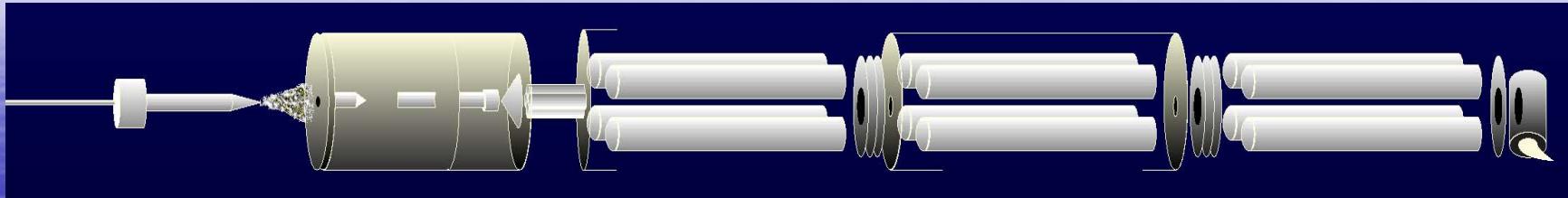

Electrospray ionization (ESI)

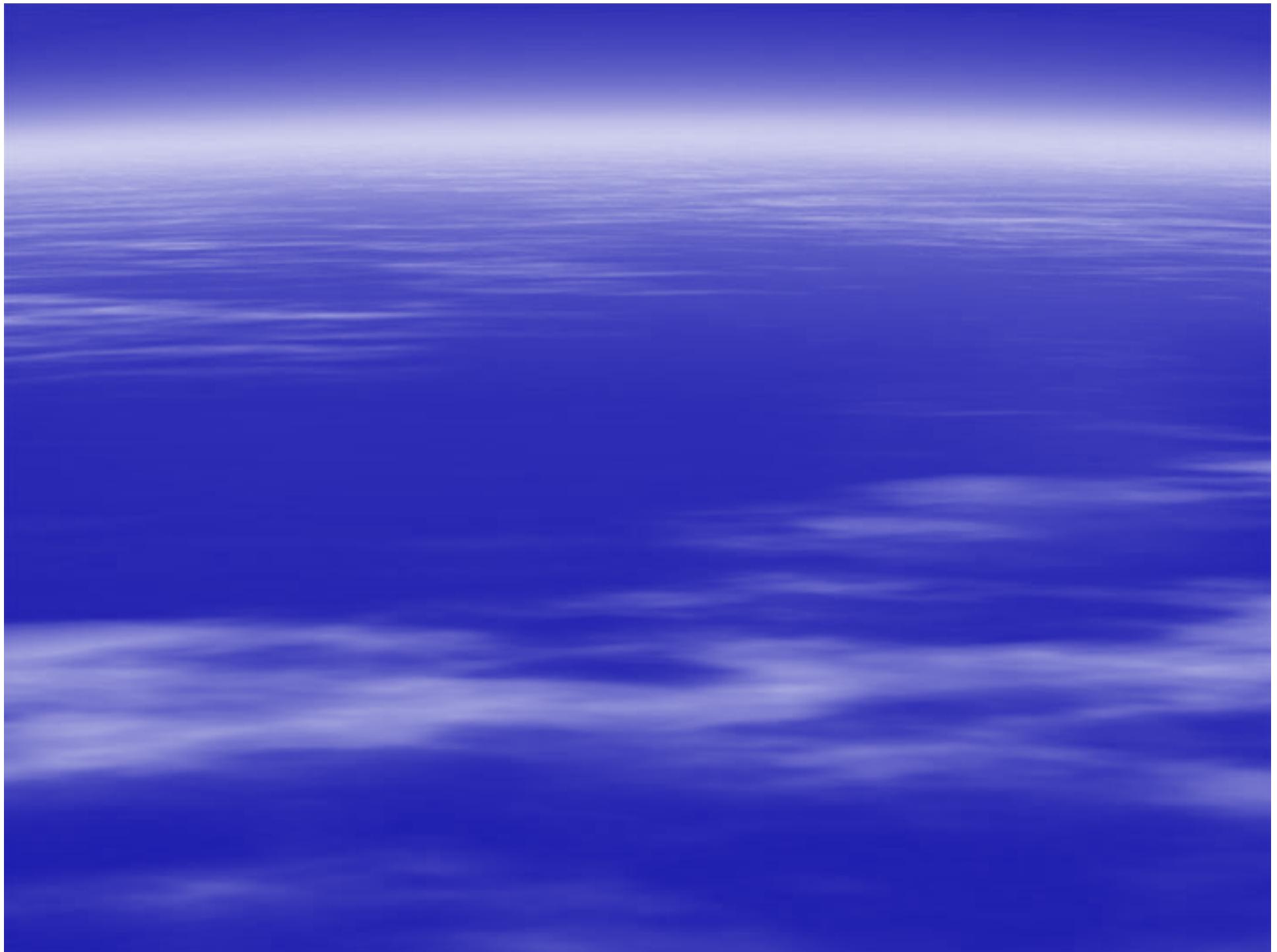



High voltage placed on a fused silica column causes a spray of charged droplets which evaporate leaving charged peptides

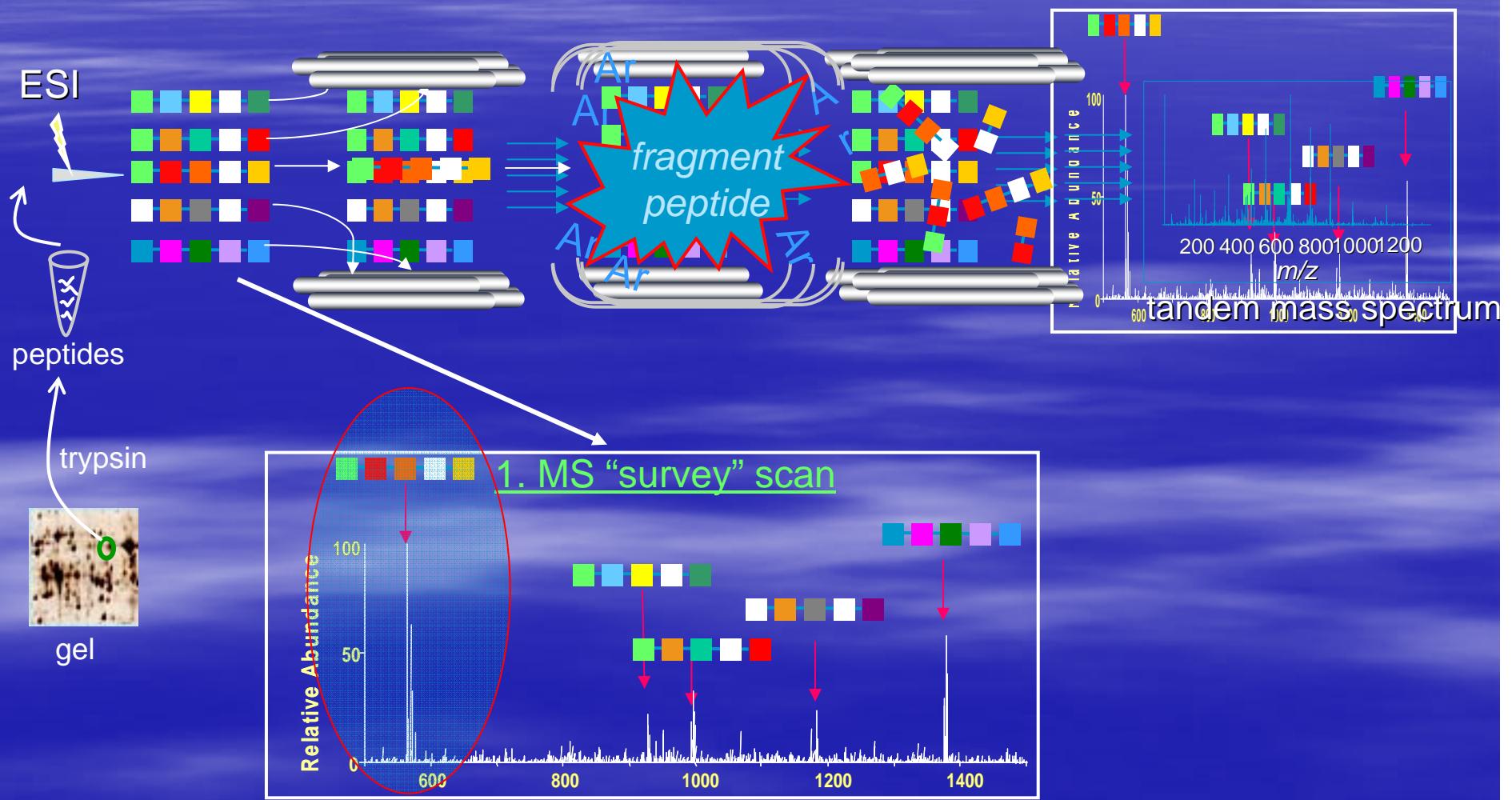

Triple Quadrupole Mass Spectrometer

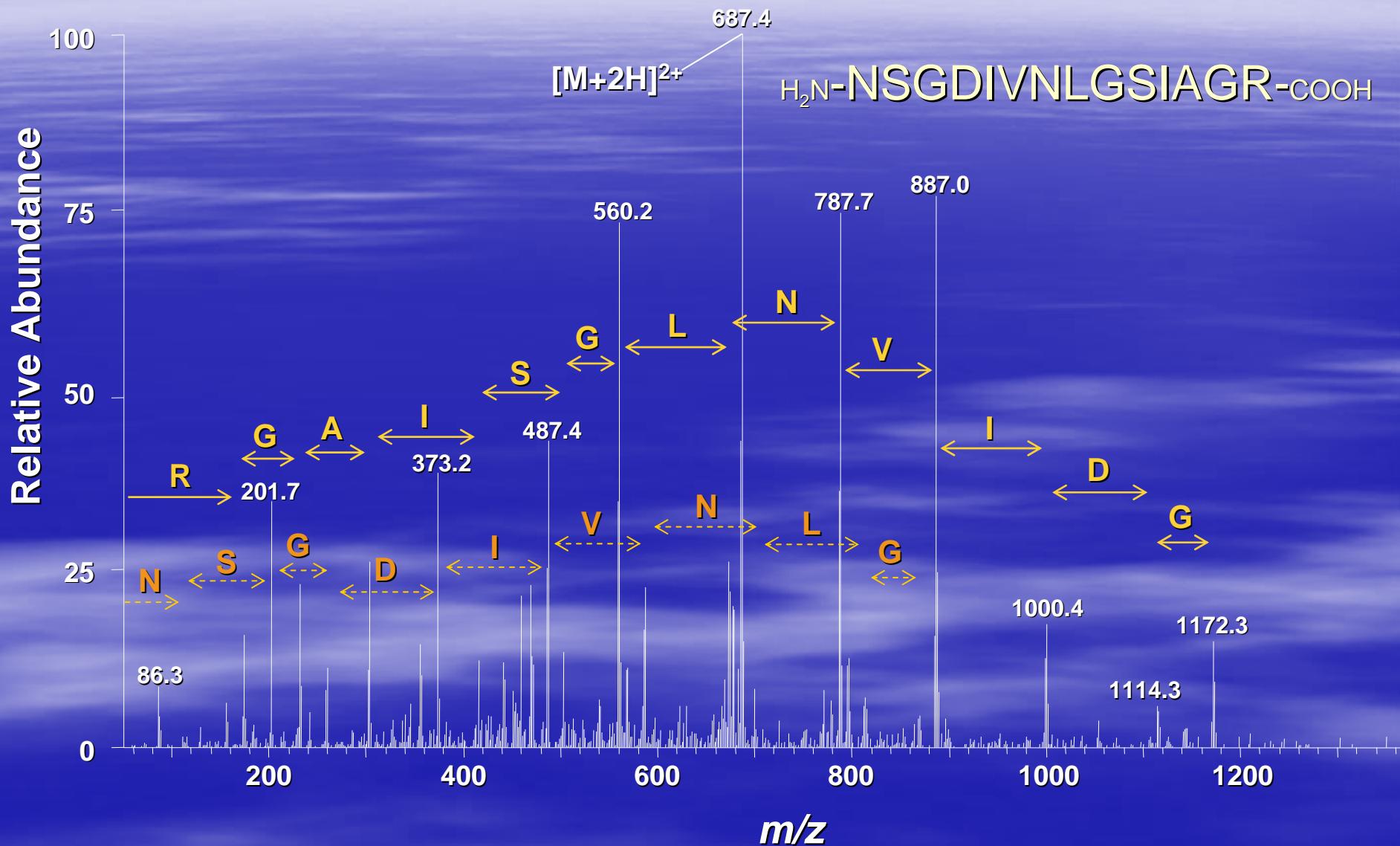


Quadrupole Optics


- In a quadrupole mass spectrometer four (quad) parallel rods (poles) are arranged equidistantly from a central (imaginary) axis.
- Charged ions are injected along the central axis of the quadrupole assembly.
- Static and alternating (radio frequency) electric potentials are applied to opposite pairs of rods, creating a fluctuating electric field.




Quadrupole Optics cont.


- The quadrupole can function in a second mode called tandem mass spectrometry or MS/MS.
- A particular peak is chosen from a MS scan and the first quad allows only that m/z to pass into the second quad.
- The second quad accelerates the species through a voltage causing collisions with an inert gas present.
- If the ion is a peptide, the collisions cause bond breakage selectively at the **amide** bonds
- The charged fragments enter the third quad which performs a MS scan generating a unique pattern associated with the fragments and thus the parent peptide
- These fragments can be deconvoluted to give a peptide sequence

Tandem mass spectrometry

Sample Peptide

Making an identification by database searching using SEQUEST

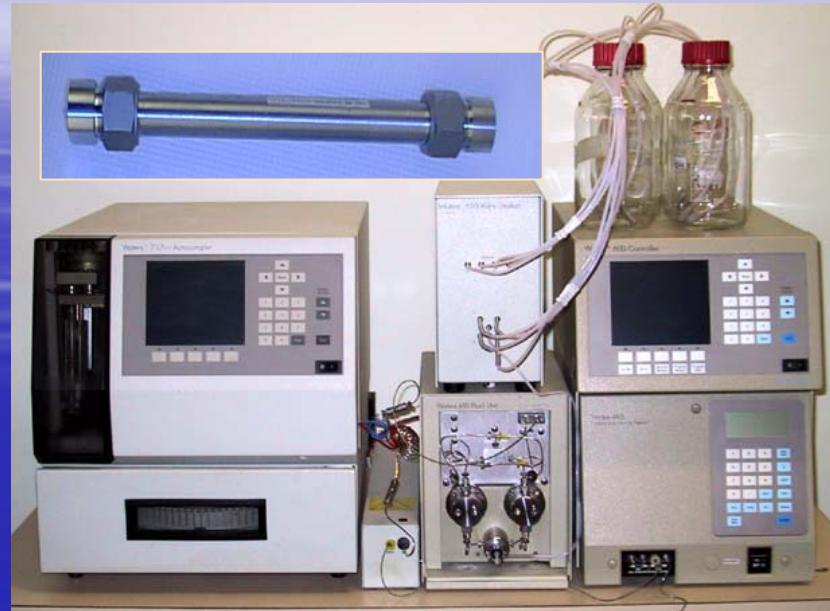
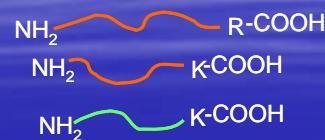
- SEQUEST is a search program that assigns a peptide sequence to a spectra by comparing it to virtual spectra from a protein database

SEQUEST Example

1. An MS/MS scan of m/z 750 and charge 2+ → the molecular weight is 1500 Da
2. SEQUEST searches a protein database starting at the first amino acid to find all possible peptides that weight 1500 +/- 1.5
3. SEQUEST fragments each virtually and compares to the experimental spectra.
4. For a good spectra, one peptide stands out from all others

SEQUEST output file

INTERACT by J.Eng - Netscape														
File Edit View Go Communicator Help														
Back Forward Reload Home Search Netscape Print Security Shop Stop														
Bookmarks Location: http:// What's Related														
HealthLinks: Ca Google Yahoo Finance Index of /data/ fishersci.com - Hotmail Inbox dmartin@systems Calendar														
FILE: /data/search/dan/4serum/interact-data.htm Tryptic: <input type="checkbox"/> Strict: <input type="checkbox"/> DelRows: <input type="checkbox"/> <input type="checkbox"/> J. Eng 04/2000 GO <input type="checkbox"/> LastUndo <input type="checkbox"/> RestoreOrig <input type="checkbox"/> SortProt <input type="checkbox"/> SortPep														
Text1: <input type="checkbox"/> <input type="checkbox"/> Text2: <input type="checkbox"/> <input type="checkbox"/> XCorr: <input type="checkbox"/> <input type="checkbox"/> dCn: <input type="checkbox"/> <input type="checkbox"/> Sp: <input type="checkbox"/> InclAA: <input type="checkbox"/> MarkAA: <input type="checkbox"/>														
1408	./serum4.1554.1554.3	3333.6	(-1.2)	6.3209	0.361	1252.5	1	38/104	SW:ALBU	HUMAN	+9	K. SHC*IAEVENDEMPADLPSLA		
1514	./serum4.1702.1702.3	2834.2	(+0.3)	6.0501	0.473	1660.2	1	33/ 84	SW:A2MG	HUMAN	+2	R. SLFIDLEAENNDVLHC*VAVAVP		
1008	./serum4.1219.1219.3	2430.6	(-1.2)	5.9068	0.448	1643.3	1	32/ 72	SW:TRFE	HUMAN	+4	K. SDNC*EDTPAEGYFAVAVVK		
1119	./serum4.1302.1302.3	2416.6	(+1.2)	5.3039	0.362	2199.8	1	32/ 60	SW:CFHD	HUMAN	+4	K. C*YFPYLENGYMQNYGR		
1108	./serum4.1294.1294.3	2297.6	(-0.4)	4.9588	0.359	1437.1	1	31/ 68	SW:CO4	HUMAN	+6	R. GC*GEQTMIIYLAAPTLAASR		
1112	./serum4.1298.1298.2	2297.6	(-0.6)	4.8816	0.430	1407.7	1	24/ 34	SW:CO4	HUMAN	+6	R. GC*GEQTMIIYLAAPTLAASR		
1067	./serum4.1266.1266.2	2113.4	(-0.8)	4.8355	0.345	2241.4	1	22/ 28	SW:ALBU	HUMAN	+11	R. PC*FSALEVDETYVPK		
1070	./serum4.1267.1267.3	2113.4	(+0.5)	4.6168	0.345	1260.1	1	31/ 56	SW:ALBU	HUMAN	+11	R. PC*FSALEVDETYVPK		
1078	./serum4.1272.1272.3	2016.2	(-1.4)	4.5652	0.268*	2251.6	1	27/ 48	SW:ALBU	HUMAN	+11	K. QNC*ELFEQLGEYK		
764	./serum4.1031.1031.3	1703.9	(-0.5)	4.5637	0.305	1894.7	1	27/ 44	SW:HPT1	HUMAN	+9	K. SC*AVAEYGVVVK		
1379	./serum4.1527.1527.2	2004.3	(+2.6)	4.5351	0.335	1023.4	1	21/ 26	SW:A1BG	HUMAN	+4	R. CEGPIPVDITFELLR		
1071	./serum4.1268.1268.2	2113.4	(+2.0)	4.5312	0.370	1722.4	1	21/ 28	SW:ALBU	HUMAN	+11	R. PC*FSALEVDETYVPK		
1295	./serum4.1456.1456.2	2234.6	(-0.5)	4.4580	0.431	1087.2	1	22/ 32	SW:A1BG	HUMAN	+1	K. VTLTC*VAPLSGVDFQLR		
985	./serum4.1202.1202.2	2422.7	(+1.9)	4.4538	0.295	1550.0	1	19/ 28	SW:TRFE	HUMAN	+4	K. LC*MGSGLNLC*EPNNK		
1158	./serum4.1338.1338.2	2465.8	(+1.8)	4.3237	0.320	791.6	1	19/ 34	SW:KHN	HUMAN	+2	K. LGQLSLDC*NAEVYVVWPWEK		
1120	./serum4.1303.1303.2	2416.6	(-0.7)	4.2952	0.335	1041.9	1	21/ 30	SW:CFHD	HUMAN	+4	K. C*YFPYLENGYMQNYGR		
877	./serum4.1112.1112.2	1936.1	(+2.9)	4.2935	0.272	1246.6	1	18/ 26	SW:TRFE	HUMAN	+4	R. FDEFFSEGC*APGSK		
1166	./serum4.1344.1344.2	2441.7	(+0.4)	4.2876	0.328	652.8	1	24/ 40	SW:A2MG	HUMAN	+1	K. AGAFC*LSEDAGLGISSTASLR		
1116	./serum4.1300.1300.2	2297.6	(+2.4)	4.2768	0.386	1346.4	1	22/ 34	SW:CO4	HUMAN	+6	R. GC*GEQTMIIYLAAPTLAASR		
1306	./serum4.1468.1468.3	2814.1	(-0.7)	4.2237	0.002	658.8	1	27/ 84	SW:CERU	HUMAN	+3	R. MYSVNGYTFGSLPGLSMC*AED		
1126	./serum4.1307.1307.2	2416.6	(+2.3)	4.1085	0.269	1092.9	1	21/ 30	SW:CFHD	HUMAN	+4	K. C*YFPYLENGYMQNYGR		
1023	./serum4.1230.1230.2	2015.3	(+2.2)	4.1073	0.396	1189.6	1	21/ 28	SW:IGJ	HUMAN	+1	K. C*YTAVVPLVYVGGETK		
1012	./serum4.1222.1222.3	2015.3	(-0.3)	4.0929	0.164	1386.5	1	30/ 56	SW:IGJ	HUMAN	+1	K. C*YTAVVPLVYVGGETK		
1291	./serum4.1454.1454.2	2234.6	(+1.7)	4.0300	0.258	882.3	1	20/ 32	SW:A1BG	HUMAN	+1	K. VTLTC*VAPLSGVDFQLR		
1294	./serum4.1455.1455.3	2234.6	(+1.0)	4.0248	0.267	1238.3	1	29/ 64	SW:A1BG	HUMAN	+1	K. VTLTC*VAPLSGVDFQLR		
1153	./serum4.1330.1330.3	2297.6	(+0.2)	4.0169	0.224	1330.8	1	31/ 68	SW:CO4	HUMAN	+6	R. GC*GEQTMIIYLAAPTLAASR		
1162	./serum4.1342.1342.2	2465.8	(-0.6)	3.9660	0.295	930.3	1	20/ 34	SW:KHN	HUMAN	+2	K. LGQLSLDC*NAEVYVVWPWEK		
1013	./serum4.1223.1223.2	2430.6	(-0.4)	3.9568	0.268	631.8	1	20/ 36	SW:TRFE	HUMAN	+4	K. SDNC*EDTPAEGYFAVAVVK		
1484	./serum4.1662.1662.2	2529.9	(-0.1)	3.9566	0.205	526.7	1	18/ 36	SW:TRFE	HUMAN	+2	R. SAGWNIPIGLLYC*DLPEPR		



Mixture analysis – the need for separations

- Mass spectrometers have limited peak capacities requiring separation and fractionation prior to analysis
- Separation methods include:
 - gels
 - liquid chromatography
 - affinity chromatography
 - immunochromatography
 - selective enrichment by covalent chemistry

Separation of peptides by electrostatic charge using cation exchange

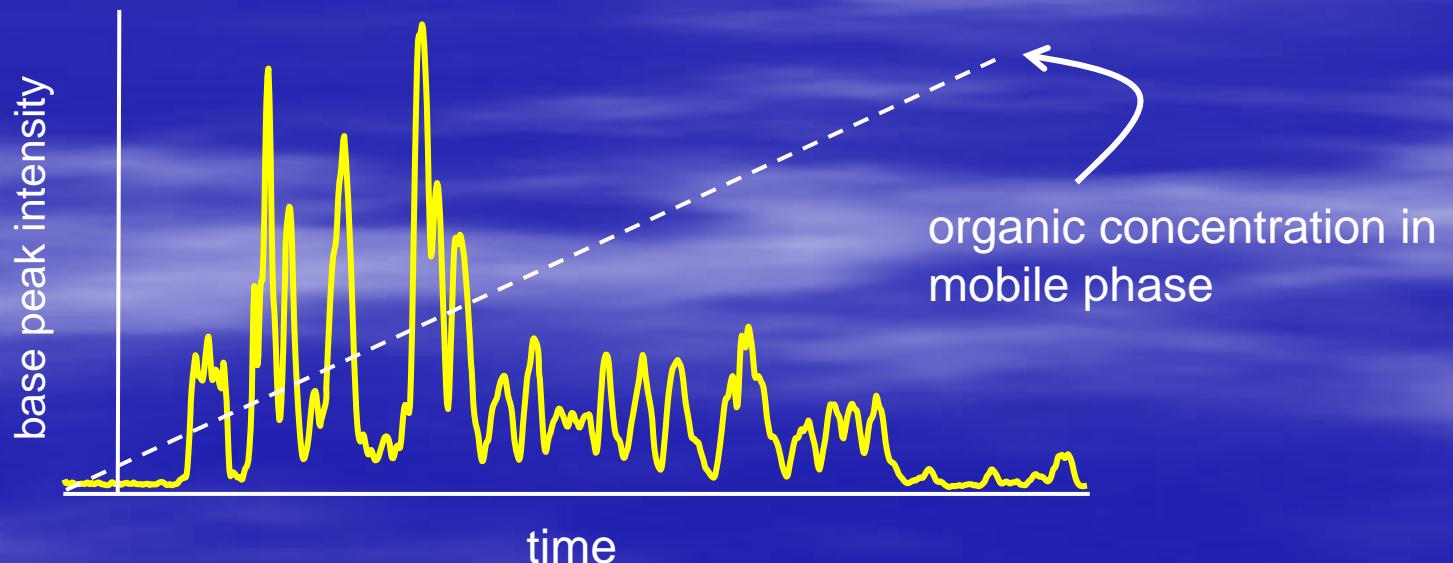
In acidic conditions, tryptic peptides are positively charged

Cells +

Digestion with
Trypsin to
peptides and
separation

HPLC
separation
during mass
spectrometry

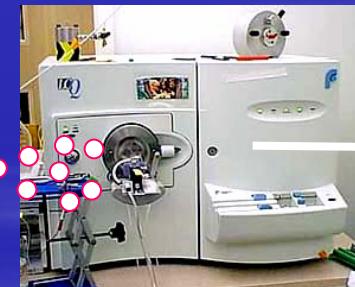
Liquid chromatography miniaturization for ESI-MS


decrease size, increase sensitivity

<u>Size</u>	<u>Sensitivity</u>
2.1 cm	----
1.0 cm	4.4 fold
4.6 mm	21 fold
1.0 mm	441 fold
50 μ m	176,400 fold

microcapillary LC-MS

- reverse-phase separation of peptides – allows for a gradual introduction of peptides into the mass spectrometer.
- removal of contaminants through washing



A New Paradigm--Mass spectrometry based Proteomics--Without Electrophoresis

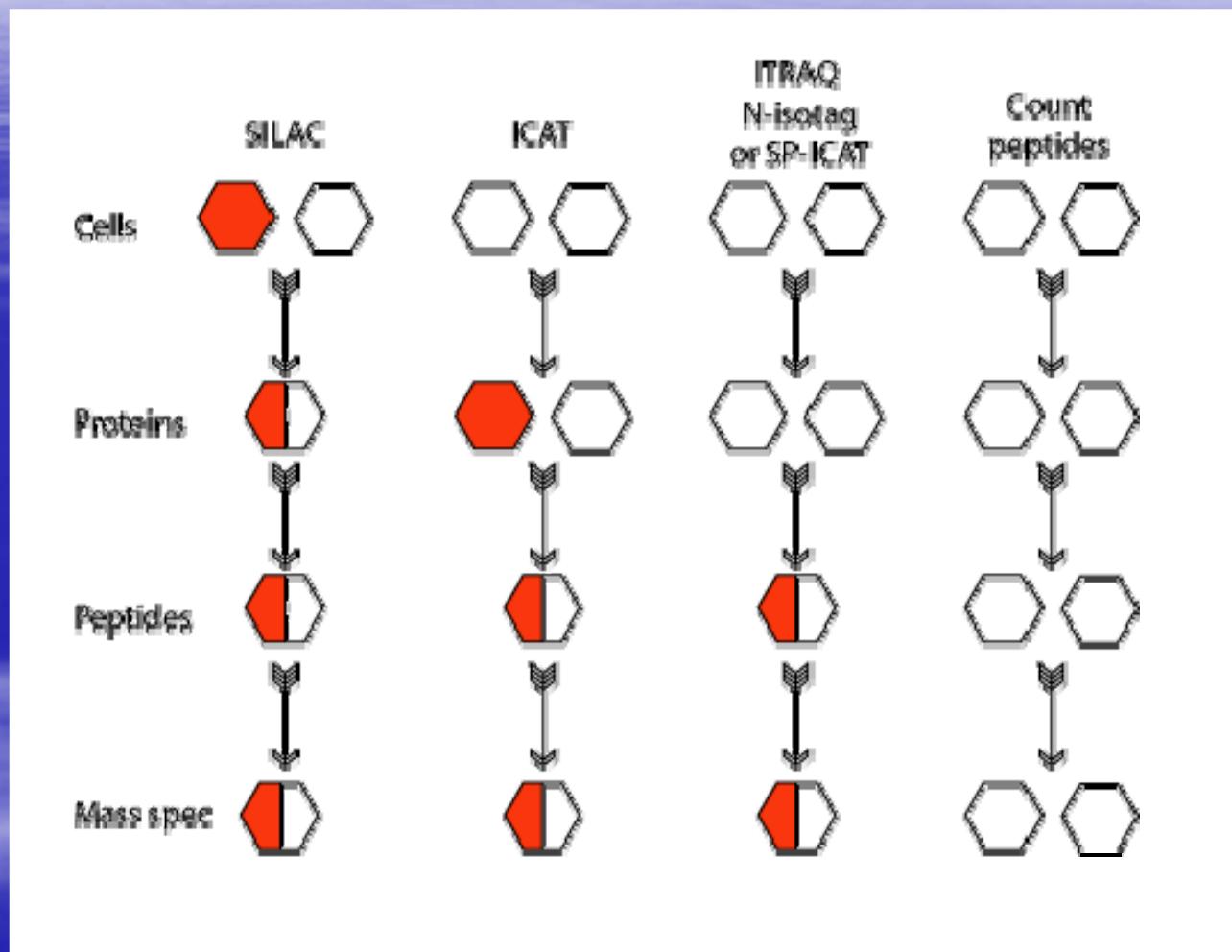
Digestion with Trypsin to peptides and separation

HPLC separation during mass spectrometry

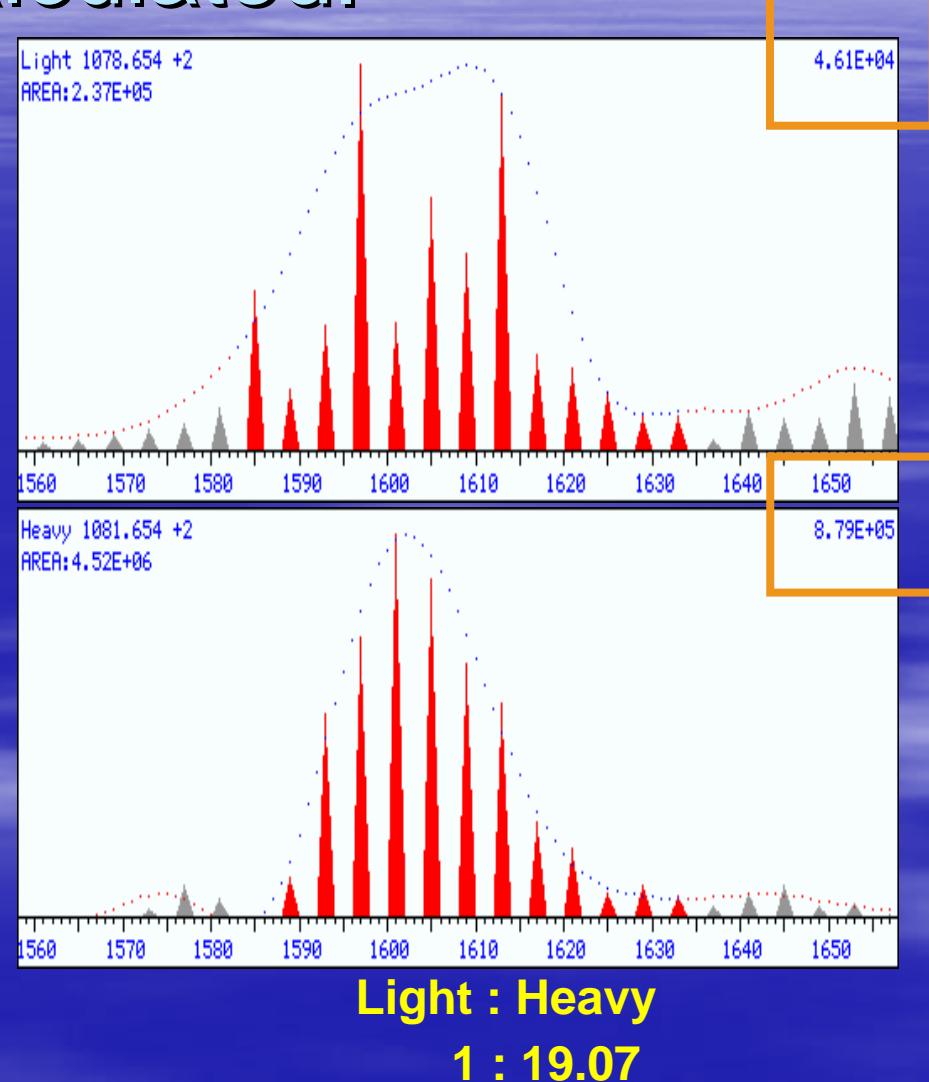
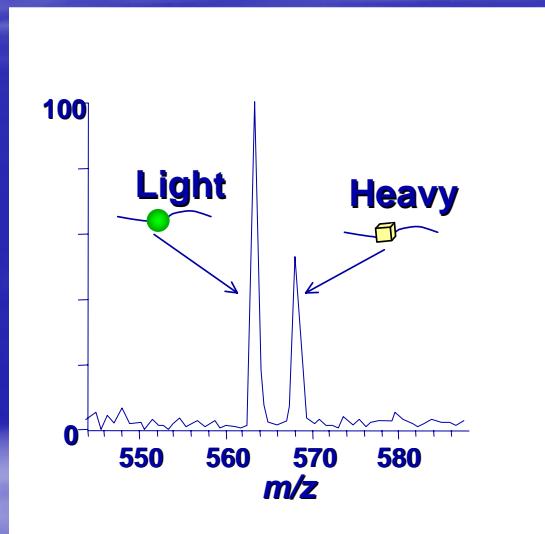
Mass spectrometry identifies proteins

Gene	Protein Name	Ave	S.D.	Unique	Cell
INFRS10	TNF receptor superfamily member 10B precursor	17.17	4.58	1	M
BSG	Basigin precursor	12.88	5.02	5	M
TFRC	Transferrin receptor protein 1	7.81	2.27	3	M
PTEN	Phosphatase and tensin homolog 1 precursor	10.00	2.27	1	S
LGFBP3	Leukocyte growth factor binding protein 3 precursor	7.98	2.72	3	S
LDLR	Low-density lipoprotein receptor precursor	6.57	1.64	12	M
ANGPT1	Angiopoietin-1 precursor	6.08	1.40	1	S
ANGPT2	Angiopoietin-2 precursor	5.57	1.31	3	S
SCOTIN	77S coaten-binding protein	5.39	3.63	1	7
PLK2	Grindulic kallikrein 2 precursor	5.34	3.42	6	S
APOL2	Angiotensin II type 2 receptor	5.11	1.11	23	M
APOL1	Angiotensin II type 1 receptor	5.17	2.19	1	M
SPINT1	Kunitz-type protease inhibitor 1 precursor	3.88	1.98	22	S
LRIG1	Membrane glycoprotein LRIG-1	3.59	1.59	3	M
TMEM136B	Transmembrane protein 136B precursor	3.54	1.24	3	S
VEGFR	Vascular endothelial growth factor A precursor	3.49	0.24	3	S
LGNN	Legumain precursor	3.24	0.53	2	C
ALCAM	CD166 antigen precursor	3.19	0.39	7	M
TMEM165	Transmembrane protein 165	3.13	0.39	1	S
ENSG00000000441	receptor-type tyrosine phosphatase	2.97	0.41	4	M
LCN2	Leucine-rich repeat含alpha chain precursor	2.85	1.60	2	M
LGALSF1	Leucine-rich alpha 2-glycoprotein 1 precursor	2.85	0.40	1	S
CT101B	Protein CT10B precursor	2.56	0.19	2	M
ST14	Suppressor of tumorigenicity 14	2.60	0.74	10	M
PLAB	Prostate differentiation factor	2.47	0.34	6	S
TMEM174	Transmembrane protein 174 precursor	2.43	0.49	1	S
MLP	MARK3-related protein	2.38	0.93	4	C
B2M	Beta-2-microglobulin precursor	2.34	0.49	14	S
NRP1	Neuropilin 1 precursor	2.29	0.11	27	M
NRP2	Neuropilin 2 precursor	2.27	0.03	1	M
PSAP	Prostate-specific antigen precursor, contains: Sapsin A	2.26	0.35	1	S
LDLR	Low-density lipoprotein receptor	2.23	1.69	15	M
MDR1	Multi-drug transport protein P-glycoprotein	2.20	0.49	10	GO
A2M/M10	A2M/M10	2.20	0.49	10	S
KIF2R	Calponin-independent mannose-6-phosphate receptor	2.20	0.60	16	M
INFRS10	TNF receptor superfamily member 10D precursor	2.19	0.10	2	M
TMEM166	Transmembrane protein 166 precursor	2.17	0.11	1	M
SEMA6A	Semaphorin 6A precursor	2.18	0.28	4	M
YL10R	Very low-density lipoprotein receptor precursor	2.09	0.65	1	M
GALNT1	Protein N-acetylgalactosaminyltransferase	2.09	0.52	3	GO

Now all elements of the system make sense

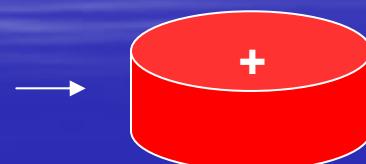

Quantitative Proteomics

Using stable heavy isotopes to perform quantification



- Because a mass spectrometer measures mass, *isotopic modifications can allow one to distinguish two samples.*
- This is done using stable isotopes such as N15, C13 and Deuterium.
- Isotopes can be introduced at various stages of an experiment

Methods of Stable Isotope Incorporation

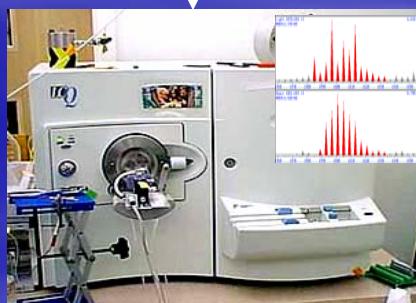
- Metabolic Labeling- with a heavy amino acid
 - SILAC (stable isotope labeling with amino acids in cell culture) uses Lysine or Arginine - 2004
- Chemical Modification
 - Cysteine
 - ICAT–Cysteine labeling of PROTEINS with capture of only the modified peptides - 2002
 - SP-ICAT a cysteine labeling of peptides on solid phase - 2005
 - Amine based
 - iTRAQ (2004) and N-Isotag (?) –amine labeling of peptides


For each peptide a ratio of heavy to light is calculated.

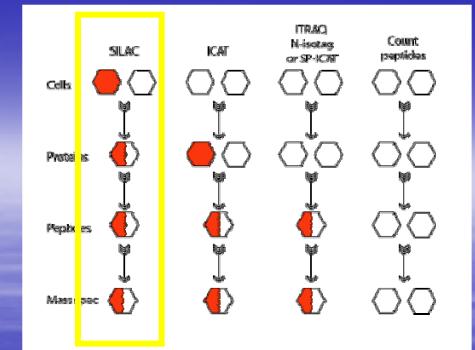
SILAC

Media w/o Lys and Arg
FCS dialyzed to remove
amino acids

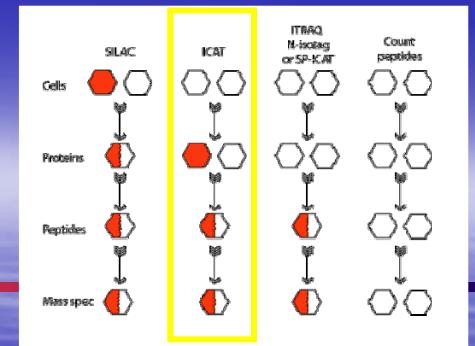
Heavy
Lysine,
Arginine
or both


Stimulus
of interest

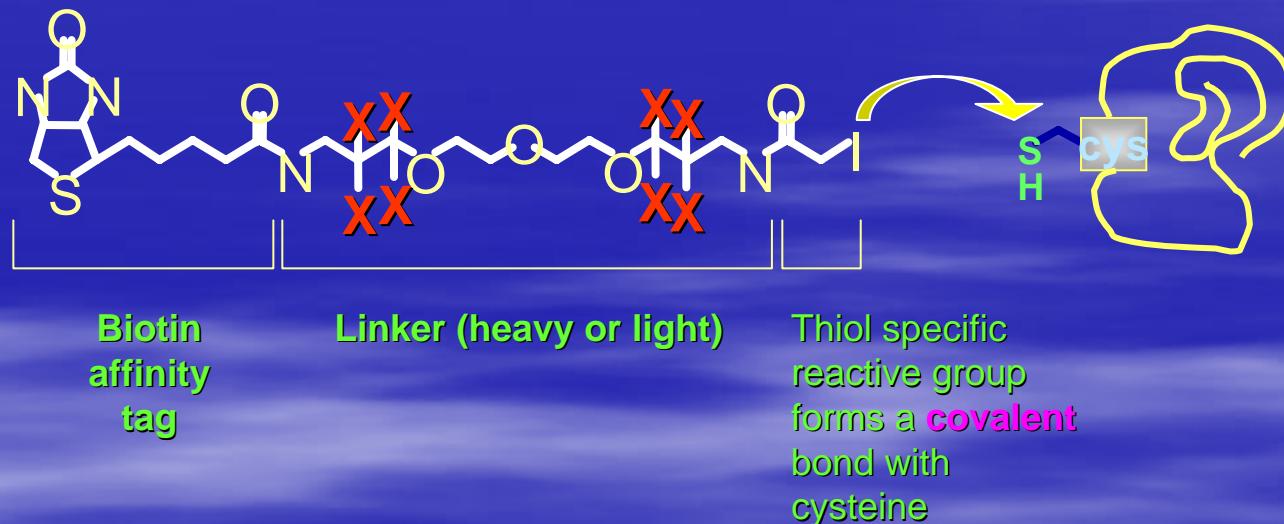
Unmodified
amino acids


Control

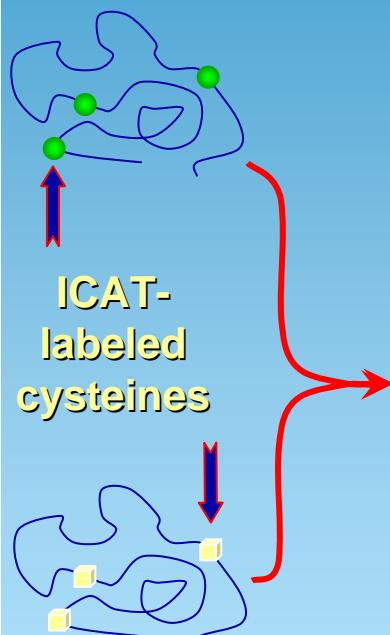
Lyse cells
together



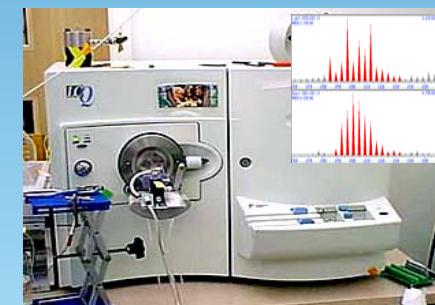
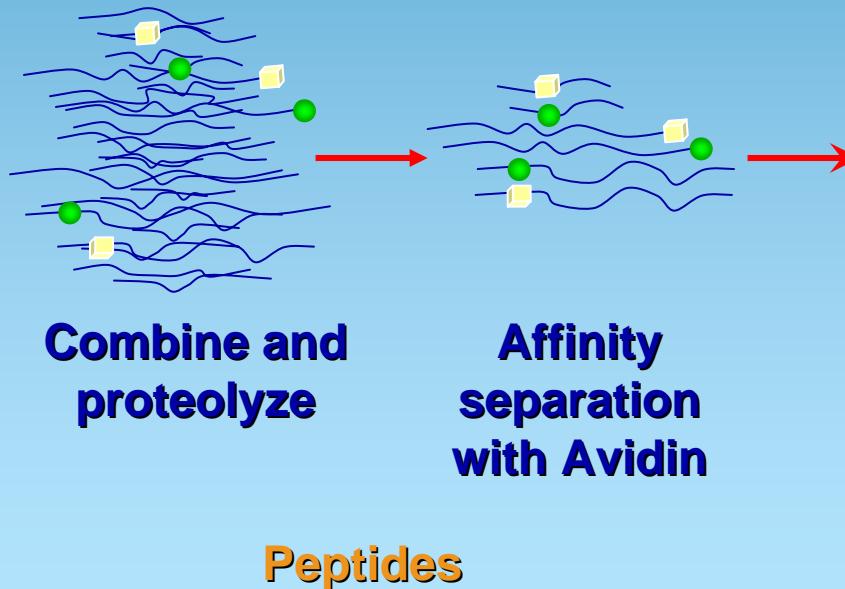
Simple
Straightforward


Dialysis of FCS may be a
problem for some cell lines

Isotope Coded Affinity Tags (ICAT)

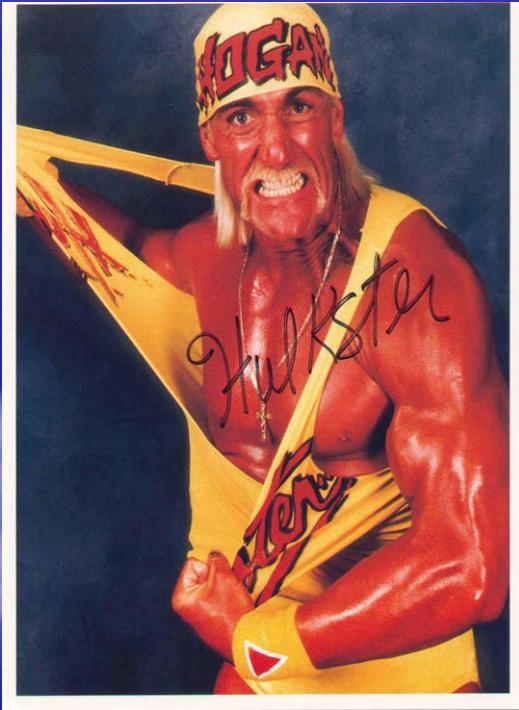


ICAT Reagents: Heavy reagent: d8-ICAT (X=deuterium)
Light reagent: d0-ICAT (X=hydrogen)



Protein Quantification and Identification by the ICAT Strategy

Mixture 1

Mixture 2


Proteins

More complicated
Potential for losses
Some proteins lack cys

How is this technology
implemented?

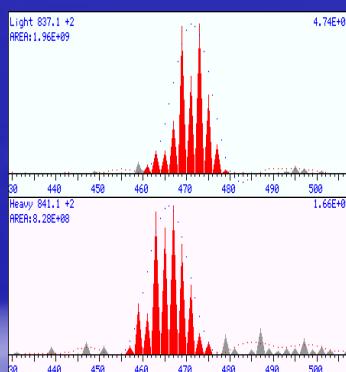
Large
scale

Medium
scale

Small scale

Global Proteomics

- Big project.
- Costly
- Requires extensive resources for follow up
- Large potential payoffs for novel discoveries


Big project example:

Analysis of proteins released from
androgen stimulated or unstimulated
cultured prostate cancer cells

Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium.
Cancer Res. 2004 Jan 1;64(1):347-55.

- This project took approximately 12 months to complete.
- If performed beginning today the proteomic portion could be finished in 3-4 months.
 - Automation of mass spectrometers
 - Automation of data analysis using PeptideProphet and ProteinProphet
 - Automation of quantification using ASAPratio

More
abundant
with
androgen
addition

Gene	Protein Name	A+/A-	S.D.	Unique	Cell
TNFRSF10B	TNF receptor superfamily member 10B precursor	17.17	4.58	6	M
BSG	Basigin precursor	12.88	5.02	5	M
TFRC	Transferrin receptor protein 1	7.81	2.27	3	M
F11R	Junctional adhesion molecule 1 precursor	7.36	1.68	4	M
IGFBP3	Insulin-like growth factor binding protein 3 precursor	7.08	2.72	3	S
LDLR	Low-density lipoprotein receptor precursor	6.57	1.64	12	M
ANGPT2	Angiopoietin-2 precursor	6.08	1.40	1	S
TGSF8	EWI2	5.43	1.10	4	M
SCOTIN	??Scotin-BAB71152. unnamed protein	5.39	3.63	1	?
KLK2	Glandular kallikrein 2 precursor	5.34	3.42	6	S
JAG1	Jagged 1 precursor	4.92	1.43	23	M
APLP2	Amyloid-like protein 2 precursor	4.17	2.06	9	M
SPINT1	Kunitz-type protease inhibitor 1 precursor	3.89	1.08	22	S
LRIG1	Membrane glycoprotein LIG-1	3.59	1.39	3	M
KLK3	Prostate specific antigen precursor	3.50	0.66	37	S
VEGF	Vascular endothelial growth factor A precursor	3.49	0.24	3	S
LGMN	Legumain precursor	3.24	0.33	2	C
ALCAM	CD166 antigen precursor	3.21	0.38	7	M
KIAA1265	Hypothetical protein KIAA1265	3.13	1.24	3	M
ACVR1B	activin A type IB receptor	2.97	0.41	4	M
PLXNB3	Plexin-B3	2.95	1.00	2	M
IL6R	Interleukin-6 receptor alpha chain precursor	2.84	0.72	3	M
C1orf8	Protein C1orf8 precursor	2.66	0.10	2	M
ST14	Suppressor of tumorigenicity 14	2.60	0.74	10	M
PLAB	Prostate differentiation factor	2.47	0.34	6	S
NOTCH2	Neurogenic locus notch homolog protein 2 precursor	2.45	0.40	2	M
MLP	MARCKS-related protein	2.38	0.93	4	C
B2M	Beta-2-microglobulin precursor	2.34	0.48	14	S
NRP1	Neuropilin-1 precursor	2.33	0.36	27	M
NEO1	Neogenin precursor	2.27	0.03	5	M
PSAP	Proactivator polypeptide precursor, contains: Saposin A	2.26	0.35	1	S
CDH1	E-cadherin	2.23	1.69	15	M
ATOX1	Copper transport protein ATOX1	2.21	0.22	3	GOL
ADAM10	ADAM10	2.20	0.46	10	S
IGF2R	Cation-independent mannose-6-phosphate receptor	2.20	0.60	16	M
TNFRSF10A	TNF receptor superfamily member 10D precursor	2.19	0.10	3	M
PLXNB1	Plexin-B1/SEP receptor precursor	2.18	0.51	2	M
SEMA4A	Semaphorin 4A precursor	2.18	0.48	4	M
VLDLR	Very low-density lipoprotein receptor precursor	2.09	0.05	1	M
GALNT1	Polypeptide N-acetylgalactosaminyltransferase	2.09	0.52	3	GOL

Medium Scale and Phosphorylation Proteomics

The key to medium scale proteomics is a mechanical or affinity based preparation that reduces the complexity of the starting material.

Examples: centrifugation, precipitation.

Peroxisome membrane

JCB: ARTICLE

Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane

Marcello Morelli,¹ Jennifer J. Smith,¹ Sunhee Jung,¹ Eugene Yi,¹ Alexey I. Novitskiy,¹ Rowan H. Christmas,¹ Ramsey A. Saleem,¹ Yuen Y. C. Tam,² Andrei Fogasaru,³ David R. Goodlett,¹ Ruedi Aebersold,¹ Richard A. Rohrbach,¹ and John D. Atchison,^{1,2}

¹Institute for Systems Biology, Seattle, WA 98103
²Department of Cell Biology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada

We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of *Saccharomyces cerevisiae*. In two complementary experiments, isotope-coded affinity tags and tandem mass spectrometry were used to quantify the relative enrichment of proteins during the purification of peroxisomes. Mathematical modeling of the data from 306 quantified proteins led to a prioritized list of 70 candidates whose enrichment scores indicated a high likelihood of them being peroxisomal. Among these proteins, eight novel peroxisome-associated proteins were identified. The top novel peroxisomal candidate was the small GTPase Rho1p. Although Rho1p has been shown to be tethered to membranes of the secretory pathway, we show that it is specifically recruited to peroxisomes upon their induction in a process dependent on its interaction with the peroxisome membrane protein Pex25p. Rho1p regulates the assembly state of actin on the peroxisome membrane, thereby controlling peroxisome membrane dynamics and biogenesis.

Introduction

Although the complete sequence of a genome provides a blueprint for the protein inventory of an organism, understanding the dynamic and responsive organization of a proteome remains a major challenge. Within eukaryotic cells, subcellular organelles are the most obvious level of organization, containing assemblies of localized proteins that impart efficiency and control over the biochemical functions performed by the proteome. Recent advances that have increased the sensitivity and throughput of mass spectrometry (MS) have made possible the identification of proteins in samples of complexity on the order of organelles. However, the use of MS to comprehensively define organelar protein content is still a formidable undertaking. The polydispersity within organelle classes resulting from biological diversity and the limited resolving power of subfractionation techniques contribute to the notorious problem of organelle contamination by proteins from other cellular compartments. Moreover, the levels of different proteins in an organelle fraction can vary over several orders of magnitude, resulting in highly represented proteins, or even contaminants, dominating the mass spectrometric analysis.

The issue of sample complexity has been addressed at both the prefractionation and instrumentational levels (for review see Aebersold and Mann, 2003). Likewise, various biochemical methods, including serial purification, immunoprecipitation, and free flow electrophoresis, have been applied to reduce contaminants (for review see Brunet et al., 2003). Although these methods improve sample purity, they remain unable to discriminate between bona fide organelle constituents and residual contaminants.

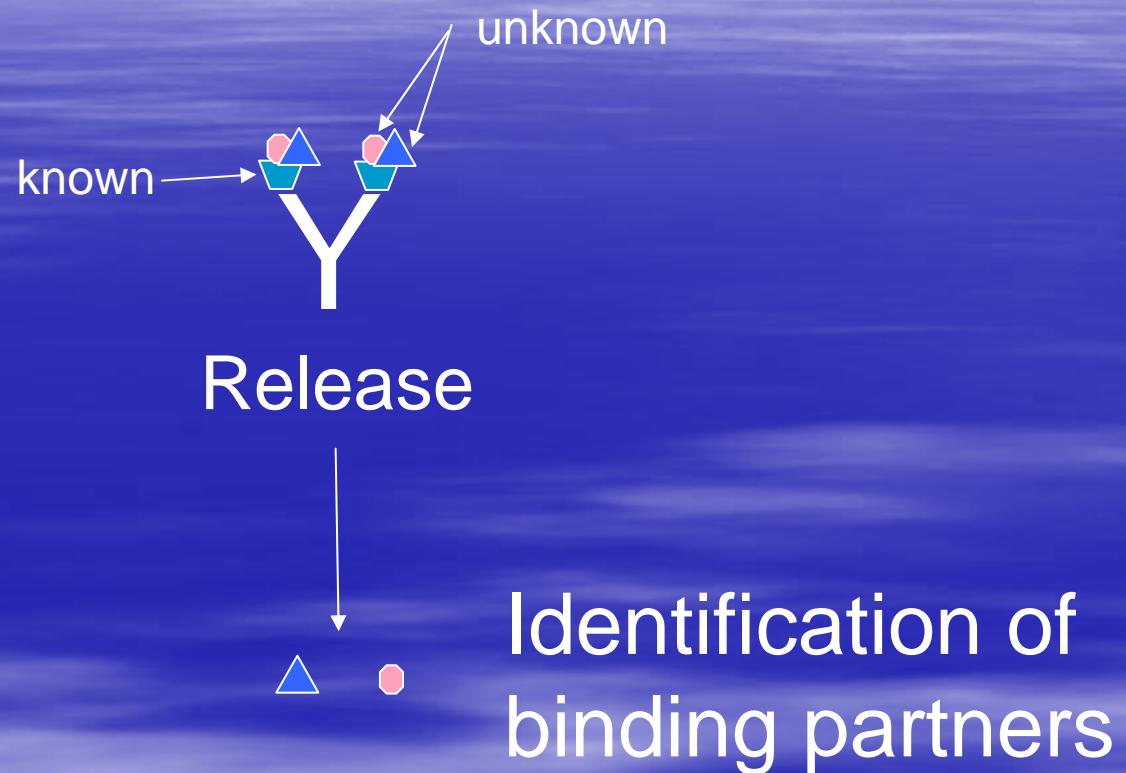
The problem of contaminants in isolated organelles is not new to the proteomic era. Classically, de Duve (1992) defined true constituents of a subcellular fraction not as the proteins present in the fraction but rather as the proteins that specifically enrich in that fraction relative to other fractions, a designation that requires knowledge of relative protein abundances. The application of these principles of fractionation analysis to high-throughput proteomics can, in effect, address the issue of contaminating proteins. However, traditional MS is not well

The online version of this article includes supplemental material.
Correspondence to: John D. Atchison, jatc@systemsbiology.org.
Abbreviations used in this paper: AP, affinity-purified peroxisomal membrane; DsRed, *Drosophila* ap. red fluorescent protein; ICAT, isotope-coded affinity tags; MS, mass spectrometry; pGK254M1, microsorghum liquid chromatography; Western blot, Western blotting; GFP, green fluorescent protein; GFP-tagged signal protein; GFP-tagged Rho1p; GFP, *Saccharomyces cerevisiae* GFP gene; GFP, *Saccharomyces cerevisiae* GFP gene; GFP, *Saccharomyces cerevisiae* GFP gene.

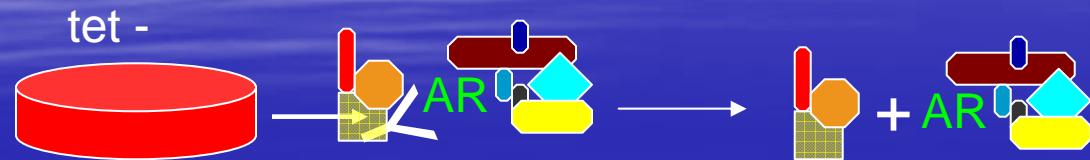
© The Rockefeller University Press 0021-9524/03/121083-19\$15.00/0

Received April 1, 2003; revised June 12, 2003; accepted June 12, 2003.
Published online July 1, 2003 in *Journal of Cell Biology* at <http://www.jcb.org>. DOI: 10.1083/jcb.200306118

Published online July 1, 2003 in *Journal of Cell Biology* at <http://www.jcb.org>. DOI: 10.1083/jcb.200306118


“We have combined classical subcellular fractionation with large-scale quantitative mass spectrometry to identify proteins that enrich specifically with peroxisomes of *Saccharomyces cerevisiae*.”

Micro Proteomics


Micro-Proteomics

- Focus on a particular protein complex
- Affinity based purification
- Takes advantage of existing technology
- Results more approachable for an individual investigator

Micro-Proteomics

Stable tet-off FLAG-AR HeLa cell line

Big Ratios
define
proteins of
interest

Conclusions 1

- Proteomics is rapidly advancing:
 - Relative quantification is here.
 - Large scale experiments are becoming easier with better automation tools, BUT they generate vast amounts of data and consume significant resources.
 - Medium and small scale projects can be approached by an individual investigator here and now.
 - Phosphorylation is observable but methodology is still under development.

Conclusions 2

- Mass spectrometers are fantastic
- The results you get out are determined by what you put in.
- The results you get out are determined by what you put in
- The results you get out are determined by what you put in.
- Problems are most often NOT the result of poor instrument performance
- Your results depend on the following:
 - The purity and cleanliness of your preparation
 - The complexity of your sample compared to the dynamic range and duty cycle of the instrument